Subconscious Fear: The Role of the Lower Brain
(Posted on Thursday, June 20, 2024)
KEY POINTS
• Fear is essential for survival, but excessive fear can lead to anxiety disorders.
• Recent research reveals the cerebellum’s role in fear regulation beyond motor control.
• Understanding cerebellar involvement in fear offers insights for anxiety disorder treatments.
Fear is a fundamental emotion necessary for survival. We experience fear in several ways that have helped humans stay alive, but it can go beyond what is appropriate for survival. Persistent fear and anxiety are symptoms of posttraumatic stress disorder and general anxiety disorder, affecting about 8 percent of American women and 4 percent of American men. Where does this fear come from and where is it located in the brain? New research has begun to tell us that fear exists well below the conscious level in the cerebellum and is an important component of what was previously thought to be exclusively responsible for internal motor functions. New experiments examine this part of the brain with the ultimate hope that there may be improved treatments for anxiety and fear disorders.
The Role of the Cerebellum
The cerebellum, located at the back of the brain and intimately connected to the brainstem, has various motor and cognitive functions. It is well known for its role in maintaining balance, coordinating fine movements, and learning new motor skills. More recently, however, new research has demonstrated that the cerebellum contributes to certain cognitive abilities beyond motor control, such as attention, emotional processing, decision-making, and procedural learning.
Recent studies have observed the cerebellum’s role, particularly in regulating fear. Fear is necessary for survival and humans learn fear responses through exposure. The cerebellum has been shown to contribute to learned fear responses, also known as conditioned fear responses. This is when a fear of a previously neutral stimulus (for example a tone, light, or context) is developed through a learning process like classical conditioning. The neutral stimulus is consistently paired with a threatening stimulus (like an electric shock or loud noise) creating an association whereby what was once neutral becomes frightening. For example, a tone repeatedly followed by an electric shock becomes frightening, regardless of whether or not the shock follows.
Read the original article on Psychology Today.